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Abstract—This paper proposes a finite quantized-output
feedback tracking control method for a general class of
continuous-time linear time-invariant systems. Firstly, an
analytical pole placement-based control law is constructed
using a finite quantized-output signal and an external ref-
erence output signal. Then, it is proven that the proposed
control law can ensure all closed-loop signals are bounded,
and the output tracking error converges to a residual set of
the origin exponentially. Moreover, we show that the resid-
ual set can be made arbitrarily small if the magnitude of
the quantizer satisfies a specified condition. This method
combines the advantages of the classical pole placement
control technique and the quantized control technique.
Compared with the existing tracking control methods, it
not only reduces the feedback information requirement, but
also has full capability to deal with unstable poles and
zeros in the controlled plant for output tracking. A numer-
ical example is presented to verify the validity and new
features of the proposed method.

Index Terms—Continuous-time, finite time, output track-
ing, pole placement control, quantized-output feedback.

I. INTRODUCTION

THE CONTROL systems subject to quantization and/or
saturation constraints have attracted a lot of attention in

the control community. On the one hand, measurement errors
and saturation constraints often exist in real control systems
due to sensor accuracy and magnitude limitations. On the other
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hand, quantized feedback control has specific advantages over
precise feedback control [1]–[4]. Classical state and output
feedback control methods generally cannot be directly applied
to control systems subject to quantization and saturation mea-
surements, especially in the case of finite quantization. It is of
significant theoretical and practical interest to systematically
study quantized control systems.

The quantizers in control systems are generally classified
into two types according to whether the quantizer is static or
dynamic. A static quantizer is typically easy to use, but it may
not be easy to achieve global convergence and often needs infi-
nite quantization levels. Because of this, a dynamic quantizer is
first developed in [5]. Compared with the static quantizer, the
dynamic quantizer generally has a tunable parameter called
the “sensitivity”. Dynamic quantization also has promising
applications in practice, such as vision-based control, about
which a comprehensive description can be found in [5]. Up to
the present, we have witnessed tremendous developments in
quantized feedback control theory and applications [6]–[16].

Although great progress has been made in quantized control
theory and applications, some open problems still need to be
addressed. In particular, [5] extensively studied the stabiliz-
ing control problems for linear time-invariant systems (LTI)
systems. It motivates us to consider whether the stabilizing
method in [5] can be extended to output tracking control of
general continuous-time LTI systems, especially for the non-
minimum phase case. Recently, we have solved the model
reference control (MRC) problem of discrete-time LTI systems
by quantized-output feedback in [17]. However, the method
in [17] is only applicable to control minimum-phase systems.
Moreover, the proposed method in [17] is not effective for
the controlled plant addressed in this paper due to the essen-
tial differences between the stability characterizations of the
continuous-time and discrete-time systems. Therefore, to effi-
ciently control a general class of continuous-time LTI systems
covering both minimum-phase and non-minimum phase, we
plan to use the well-known pole placement control (PPC)
method. For a detailed introduction to PPC, the readers may be
referred to [18]–[20]. This paper will for the first time address
output tracking control of a general class of continuous-
time LTI systems covering minimum-phase and non-minimum
phase by using finite quantized-output feedback. By the way,
the quantization based control methods have been applied for
solving some vision-based control problems in [21] and some
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mobile vehicles control problems [22]. The contributions of
this paper are as follows.

• A finite quantized-output feedback method is proposed
for a general class of continuous-time LTI systems. We
show that a finite quantized-output feedback version of
the classical PPC law guarantees closed-loop stability and
bounded output tracking for the above systems.

• Compared with existing literature, the proposed control
method has its distinctive characteristics: the proposed
control law is constructed only by using the external ref-
erence input and the finite-and-quantized output; the con-
trolled plant is allowed to have unstable poles and zeros,
that is, the proposed method is effective for both the
minimum-phase and non-minimum phase systems; and
the tracking result is global in the sense that the proposed
control law is independent of the initial conditions.

The rest of the paper is organized as follows. Section II
presents the problem statement. Section III designs the
quantized-output feedback PPC law and gives the stability and
output tracking analysis. Section IV illustrates a simulation
example to verify the effectiveness of the proposed control
method. Section V gives some concluding remarks.

Notation: In this paper, we use R+ and Z
+ to denote the sets

of positive real numbers and positive integers, respectively. By
L and L−1, we denote the Laplace transform and the inverse
Laplace transform. Let s denote the differentiation operator
or Laplace transform operator, i.e., s[x](t) = ẋ(t) or L(x(t))
with x(t) ∈ R

n, t ≥ t0. By L∞ and L1, we denote two signal
spaces defined as L∞ = {x(t) : ‖x(·)‖∞ < ∞} and L1 =
{x(t) : ‖x(·)‖1 < ∞} with ‖x(·)‖∞ = supt≥t0 ‖x(t)‖∞ and
‖x(·)‖1 = ∫ ∞

t0
‖x(t)‖1dt, respectively. For any scalar transfer

function G(s), we denote ‖G‖1 = ∫ ∞
t0

|L−1(G(s))(t)|dt as the
L1 operator norm of G(s). For any X ∈ R, we let [X] =
max{k ∈ Z : k < X}. In particular, we use the notation: y(t) =
G(s)[u](t), to denote the output y(t) of a continuous-time LTI
system represented by a transfer function G(s) with input u(t).
This notation is simple to combine both time and s-domain
signal operations, helpful for control design and analysis, and
useful to avoid complex convolution expressions for control
system presentation.

II. PROBLEM STATEMENT

In this section, we present the system model to be studied
and the problems to be solved.

System model: Consider the following continuous-time
single-input and single-output (SISO) LTI system:

P(s)[y](t) = Z(s)[u](t), t ≥ t0, (1)

where y(t) ∈ R and u(t) ∈ R are the output and input, respec-
tively, t0 is the initial moment of the system operation, and
P(s) and Z(s) are some polynomials with constant coefficients
and of degrees n and n − 1, respectively, i.e.,

P(s) = sn + pn−1sn−1 + · · · + p1s + p0,

Z(s) = zn−1sn−1 + zn−2sn−2 + · · · + z1s + z0.

For the system (1), we consider the case when y(t) cannot be
measured accurately. We can only acquire finite quantized val-
ues of y(t) for feedback control. This paper uses q(y(t),�(t))
to denote the quantizer, where �(t) is a time-varying signal
called the sensitivity.

Quantizer model: The quantizer of this paper is the same
as that in [5]. It contains two parameters: a constant param-
eter M ∈ Z

+ and a time-varying parameter �(t) ∈ R
+. The

two parameters are called the saturation value and quantization
sensitivity, respectively [5]. The quantizer model is

q(y(t), �(t))

=

⎧⎪⎨
⎪⎩

M, if y(t) > (M + 1
2 )�(t),[

y(t)
�(t) + 1

2

]
, if − (M + 1

2 )�(t) < y(t) ≤ (M + 1
2 )�(t),

−M, if y(t) ≤ −(M + 1
2 )�(t).

Reference output model: The reference output signal,
denoted as y∗(t), is bounded and satisfies the condition:

Qm(s)[y∗](t) = 0, (2)

where Qm(s) = snq + qnq−1snq−1 + · · · + q1s + q0 is a monic
polynomial of degree nq such that the zeros of Qm(s) are either
in the open left-half on the complex plane or on the jω-axis
but not repeated.

Remark 1: In this paper, the reference signal needs to sat-
isfy the condition (2). As we know, under an MRC control
framework, the reference signal only needs to be bounded. It
is worth noting that the MRC method can only handle the
minimum-phase systems, however, the proposed method in
this paper not only can handle the minimum-phase systems,
but is also effective for control of non-minimum phase
systems. The condition (2) on y∗(t) is not restrictive. For many
bounded signals, we can choose some appropriate Qm(s) to
satisfy (2). A detailed explanation can be seen in [20].

Control objective: For any given bounded reference signal
y∗(t) ∈ L∞ satisfying (2), the control objective is to develop a
finite quantized-output feedback control law u(t), only using
the finite-and-quantized output q(y(t),�(t)) and the reference
output signal y∗(t), for the system model (1) to ensure that all
closed-loop signals are bounded and y(t) − y∗(t) converges to
a certain small residual set exponentially.

Assumption: The only assumption needed for control design
is as follows.

(A1): P(s)Qm(s) and Z(s) are coprime.
Assumption (A1) is a standard condition in classical PPC

for continuous-time LTI systems [20]. We will show that the
quantized-output feedback version of the classical PPC law is
valid under Assumption (A1).

III. QUANTIZED-OUTPUT FEEDBACK CONTROL DESIGN

This section presents the design details of the finite
quantized-output feedback control for the system (1). The
whole procedure mainly contains four steps. Firstly, we give a
key design equation that will be used to calculate some param-
eters for the control law design. Then we construct a finite
quantized-output feedback control law structure and derive a
tracking error equation. Thirdly, we derive some key technical
lemmas crucial for the stability analysis and sensitivity design.
Finally, along with all parameters and signals in the proposed
control law specified, we analyze the closed-loop stability and
output tracking performance.

Key design equation: To proceed, we first review a funda-
mental design equation in the classical PPC method. The key
equation is essential for the quantized control law design.

Choose a monic stable polynomial A∗(s) of degree
2n + nq − 1, where nq is the degree of the polynomial Qm(s)
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in (2). Under Assumption (A1), we can solve the following
Diophantine equation

C(s)P(s)Qm(s) + D(s)Z(s) = A∗(s), (3)

with respect to C(s) and D(s) to find a solution of the form

C(s) = sn−1 + cn−2sn−2 + · · · + c1s + c0, (4)

D(s) = dnq+n−1snq+n−1 + · · · + d1s + d0. (5)

Under Assumption (A1), the solution of the design equa-
tion (3) is unique for any A∗(s) of degree 2n + nq − 1 (the
proof can be seen in [20]).

Quantized-output feedback PPC law structure: To proceed,
we give a monic stable polynomial of degree nq + n − 1:

�c(s) = snq+n−1 + λc
nq+n−2snq+n−2 + · · · + λc

1s + λc
0.

Recalling Qm(s) below (2), we see that the coefficients qi,
i = 0, 1, . . . , nq − 1, and λc

j , j = 0, 1, . . . , nq + n − 2, are all
known. With these parameters, motivated by [20], we design
the quantized output feedback PPC law as

u(t) = θ∗T
1 ω1(t) + θ∗T

2 ω2(t) + θ∗
3 ω3(t), (6)

where ω1(t) ∈ R
nq+n−1, ω2(t) ∈ R

nq+n−1 and ω3(t) ∈ R are
of the form

ω1(t) = a1(s)

�c(s)
[u](t),

ω2(t) = a1(s)

�c(s)

[
y∗ − q(y,�)�

]
(t),

ω3(t) = y∗(t) − q(y(t),�(t))�(t),

with a1(s) = [1, s, . . . , snq+n−2]T . Moreover, the parameters
θ∗

1 ∈ R
nq+n−1, θ∗

2 ∈ R
nq+n−1 and θ∗

3 ∈ R are of the form

θ∗
1 =

⎡
⎢⎢⎢⎣

λc
0

λc
1
...

λc
nq+n−2

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 0 · · · 0
c1 c0 · · · 0
...

...
. . .

...

cn−2 cn−1 · · · c0
1 cn−2 · · · c1

0 1
. . .

...
...

...
. . . cn−1

0 0 · · · cn−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q0
q1
...

qnq−1
1

⎤
⎥⎥⎥⎥⎦,

θ∗
2 =

⎡
⎢⎢⎣

d0
d1
...

dnq+n−2

⎤
⎥⎥⎦ − dnq+n−1

⎡
⎢⎢⎢⎣

λc
0

λc
1
...

λc
nq+n−2

⎤
⎥⎥⎥⎦,

θ∗
3 = dnq+n−1.

Note that ω1(t) is the output of a system with a1(s)
�c(s)

as
the transfer function and u(t) as the input, and ω2(t) is the
output of a system with a1(s)

�c(s)
as the transfer function and

y∗−q(y,�)� as the input. Thus, these signals can be obtained.
One can verify that, with some algebraic manipulations, the

control law (6) can be converted to the following form

u(t) = (�c(s) − C(s)Qm(s))
1

�c(s)
[u](t)

+ D(s)
1

�c(s)

[
y∗ − q(y,�)�

]
(t), (7)

where C(s) and D(s) are given in (4) and (5), respectively.
The form (7) will be used for the stability analysis.

Tracking error equation: Define the tracking error and the
quantized error as

e(t) = y(t) − y∗(t),
eq(y(t),�(t)) = �(t)q(y(t),�(t)) − y(t),

respectively. Now, we give the following lemma.
Lemma 1: Under Assumption (A1), the quantized-output

feedback PPC law (6), applied to the system (1), ensures

e(t) = Z(s)D(s)

A∗(s)
[eq(y,�)](t) + ε(t), (8)

for some exponentially decaying signal ε(t).
The proof of this lemma is given in the Appendix. The

equation (8) implies that the absolute value of the tracking
error, denoted as |y(t) − y∗(t)| converges to zero exponen-
tially if using exact output feedback, i.e., eq(y(t),�(t)) = 0.
However, for the finite quantized-output feedback case, e(t) is
no longer exponentially decaying and may be unbounded due
to the saturated limitation of feedback.

Some technical lemmas: To proceed, we give the following
lemmas. These lemmas will specify some input-to-output rela-
tionships which are crucial for the stability analysis. Consider
a system described by

Y(t) = H(s)[U](t), t ≥ 0, (9)

where U(t) and Y(t) are the input and the output, respectively,
and H(s) denotes the transfer function. Let

α � max
i

{real parts of λi(A
∗(s))}, (10)

where λi(A∗(s)), i = 1, 2, . . . , 2n + nq − 1, denote the zeros
of A∗(s). Choose a constant parameter σ > 0 such that

σ + α < 0. (11)

Define

Fm(s) � Z(s)D(s)(s + σ)

A∗(s)
, fm(t) � L−1(Fm(s − σ)). (12)

Then, (8) can be re-written as

e(t) = Fm(s)
1

s + σ
[eq(y,�)](t) + ε(t). (13)

Lemma 2 [20]: Consider the system (9). If ‖U‖1 < ∞ and
‖H‖1 < ∞, then

∫ t
0 |Y(τ )|dτ ≤ ‖H‖1

∫ t
0 |U(τ )|dτ.

Lemma 2 specifies an integral relationship between the input
and the output, which will be used to prove Lemma 3.

Lemma 3: Consider the system (9). Let hσ (t) =
L−1(sH(s − σ)). If ‖hσ ‖1 < ∞, then

|Y(t)| ≤ ‖hσ ‖1

∫ t

0
exp(−σ(t − τ))|U(τ )|dτ.

The proof of this lemma is given in the Appendix. Lemma 3
gives the relationship between the output at any moment Y(t)
and an integral of the input U(t), which will play an essential
role to derive Lemma 4.

Lemma 4: The quantized-output feedback PPC law (7),
applied to the system (1), ensures that
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|e(t)|
≤ ‖fm‖1

∫ t

0

∣∣eq(y(t),�(t))
∣∣ exp(−σ(t − τ))dτ + |ε(t)|, (14)

for some exponentially decaying signal ε(t).
Proof: From (12), we have Fm(s − σ) = Z(s−σ)D(s−σ)s

A∗(s−σ)
.

Since σ +α < 0, then A∗(s−σ) is a stable polynomial. Thus,
it follows from (12) that ‖fm‖1 < ∞. By Lemma 3, (12)
and (13), we can obtain that |Z(s)D(s)

A∗(s) [eq(y,�)](t)| ≤
‖fm‖1

∫ t
0 |eq(y(t),�(t))| exp(−σ(t−τ))dτ. Then, by triangular

inequality, the proof is completed.
Lemma 4 specifies a relationship between e and eq. This

inspires us to design the control law as follows and contributes
to the establishment of Theorem 1.

Specification of the control law: To proceed, let

β � max
i

{real parts of λi(P(s))},

c � 1

2
‖fm‖1, δ1(t) � c1 exp(μt), c1 > 0, (15)

where λi(P(s)), i = 1, 2, . . . , n, denote the zeros of P(s) on the
complex plane, c1 > 0 is a chosen constant and μ satisfies α <

μ < 0 with α defined in (10). Besides, we use d to represent
an upper bound of |y∗(t)| such that |y∗(t)| ≤ d, ∀t ≥ t0. Then,
we choose a constant λ such that

max{β, 0} < λ ≤ 2σ, (16)

with σ defined in (11). If M satisfies

M >
c

σ
+ d + c1 + 1

2
, (17)

then the quantized version PPC law (6) can be specified as

u(t) =
{

0, t ∈ [t0, t1),
θ∗T

1 ω1(t) + θ∗T
2 ω2(t) + θ∗

3 ω3(t), t ∈ [t1,∞),
(18)

where

�(t) =
⎧⎨
⎩

exp(λ(t − t0)), t ∈ [t0, t2),
exp(λ(t2 − t0)), t ∈ [t2, t3),
γ exp(λ(t2 − t0)), t ∈ [t3,∞),

(19)

with γ being a designed constant such that

1

M − 1
2

(
c exp(−σ t2)

σ
+ d + δ1(t2)

exp(λ(t2 − t0))

)
< γ < 1. (20)

Moreover, ti, i = 1, 2, 3, in (19) are defined as

t1 � inf{t > t0 : |q(y(t),�(t))| ≤ M − 1},
t2 � t1 + τ0, t3 � inf{t ≥ t2 : |q(y(t))| ≤ g(t)},

with τ0 being a chosen time interval satisfying ε(t) ≤
δ1(t), ∀t ≥ t2, and

g(t) = c
exp(−σ t2)

σ
+ |y∗(t)| + δ1(t)

�(t2)
+ 1

2
.

Remark 2: To help readers better understand the proposed
PPC strategy, we give the following explanation. Since y(t0)
cannot be measured, it cannot be sure whether q(y(t0),�(t0))
is saturated or not. Thus, when t ∈ [t0, t1), we set u = 0 but
increase �(t) that grows faster than |y(t)|. The moment t1 is
the time when q(y(t),�(t)) is for the first time measured to
be unsaturated. From this moment, we change the PPC law
from zero to non-zero as shown in (18). To ensure that the

proposed PPC law (18) is independent of the decaying signal
ε(t) associated with the system initial conditions, we find a
moment t2. The moment t2 is the time when the designed
decaying signal δ1(t) is equal or larger than ε(t). By this way,
the proposed PPC law (18) is surely independent of the system
initial conditions. To achieve the tracking error as small as
possible, we switch �(t) one more time at the moment t3.
In other words, at t = t3, we change �(t) to γ�(t) with
γ ∈ (0, 1) under the condition that q(y(t),�(t)) ≤ g(t). More
details can be seen in the proof of Theorem 1.

Performance analysis: With the finite quantized-output
feedback PPC law (18), we derive the following main result.

Theorem 1: Under Assumption (A1), the quantized-output
feedback PPC law (18), applied to the system (1) with any
unmeasurable y(t0) ∈ R, ensures that all closed-loop signals
are bounded and the tracking error satisfies

|e(t)| ≤ 1

σ
cγ exp((λ − σ)t2 − λt0) + δ1(t), ∀t ≥ t3, (21)

where c and δ1(t) are defined in (15); σ , λ and γ are designed
constants satisfying (11), (16) and (20), respectively.

The proof of this theorem is given in the Appendix.
Theorem 1 clarifies that the exponential convergence of e(t)
may not be achieved due to the saturation limitation of the
quantizer, however, a bound on e(t) can be specified. As shown
in (21), the bound depends on two adjustable parameters σ and
γ . As long as σ + α < 0 and γ satisfies (20), one can choose
a larger σ and a smaller γ to make the tracking error smaller.
Next, we show that the tracking error can be made arbitrarily
small if the saturation value M satisfies a specified condition.

Theorem 2: Under Assumption (A1), for any given value
ε > 0, if M satisfies

M >
c2 exp(−λt0)

εσ 2
+ c(d + c1)

εσ
+ 1

2
, (22)

then the quantized-output feedback PPC law (18) with γ =
εσ

c exp((λ−σ)t2−λt0)
, applied to the system (1) with any unmeasur-

able y(t0) ∈ R, ensures that all closed-loop signals are bounded
and the tracking error satisfies

|e(t)| ≤ ε + δ1(t), ∀t ≥ t3, (23)

where c, c1, d and δ1(t) are defined in (15); σ and λ are
designed constants satisfying (11) and (16), respectively.

The proof of this theorem is not difficult to perform, so we
omit it for simplicity. Theorem 2 shows that e(t) can converge
to a residual set that can be made arbitrarily small if a specified
condition on M is met. Note that it can be readily to verify
whether the condition (22) is satisfied or not. If not, with (20),
one can still choose σ and γ to make the tracking error small.

In this work, the tracking error does not converge to zero
asymptotically. A key issue is that we do not fully utilize
the zoom-in feature of the sensitivity �(t) in this paper. With
adjusting the structures of the PPC law and the sensitivity, it
is possible to achieve asymptotic output tracking, which is left
as a future study.

IV. SIMULATION STUDY

This section demonstrates the design procedure and verifies
the effectiveness of the proposed control method.

Simulation system: Considering the system (1), we set
P(s) = (s − 1

2 )(s + 1), Z(s) = s − 1
3 . We can see that
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Fig. 1. Trajectories of y (t), y∗(t) and e(t).

Fig. 2. Trajectory of u(t).

this model is unstable with an unstable pole s = 1
2 and

is non-minimum phase with an unstable zero s = 1
3 . Since

in our theoretical results the reference output needs to be
bounded, we choose y∗(t) = sin(t) + cos(t), and the corre-
sponding Qm can be Qm(s) = s2 +1. What’s more, we choose
sA∗(s) = (s + 1)(s + 2

3 )(s + 3
4 )(s + 4

5 )(s + 5
6 ).

Specification of θ∗
1 , θ∗

2 , θ∗
2 and c: Set C(s) = s+c0, D(s) =

d3s3+d2s2+d1s+d0. By solving the equation C(s)Qm(s)P(s)+
D(s)Z(s) = A∗(s), we obtain a unique solution: C(s) = s −
4841
600 , D(s) = 6971

600 s3 + 223
16 s2 + 8053

600 s + 4441
400 . Choose �c(s) =

(s+1)3, and hence, from PPC law (6), the parameters are θ∗
1 =

[ 5441
600 , 2, 1782

161 ]T , θ∗
3 = 6971

600 and θ∗
2 = [ − 619

1200 ,− 643
30 ,− 8367

400 ]T .

We now calculate c. Set σ = 0.3. Then the function fm has
three zeros t∗1 = 1.1598, t∗2 = 2.4985, and t∗3 = 7.8563, and
therefore, c = 1

2‖fm‖ = 1
2

∫ ∞
0 |fm(t)|dt = 15.05.

Simulation figures: From the settings above (17), we choose
λ = 0.6, μ = −0.6, M = 2001, d = 2, c0 = 1, c1 = 1. In
particular, with �c(s) = (s + 1)3, the signals ωi(t), i = 1, 2
can be obtained. Consider the initial value y(0) = 2050. The
parameters of t1, t2, t3, τ0 and γ are specified as t1 = 0.02s,
t2 = 3.02s, t3 = 17.18s, τ0 = 3s and γ = 0.0214. Fig. 1
shows the response of the system output y(t) vs. the refer-
ence output y∗(t). It can be seen from Fig. 1 that the tracking
performance is satisfactory when t is larger than about 35s.
Fig. 2 shows the response of the quantized output feedback
PPC law. These simulation figures are consistent with the theo-
retical results. The simulation study uses a numerical example.
How to apply the proposed method for applications is currently
under investigation.

V. CONCLUSION

In this paper, we have developed a PPC based solution
to solve the finite quantized-output feedback output track-
ing control problem for a general class of continuous-time
LTI systems. The control systems are allowed to have unsta-
ble poles and zeros. An analytical control law is constructed
independent of the system’s initial condition. We show that

the proposed control law can achieve global closed-loop sta-
bility and bounded output tracking under the same condition
as the classical PPC control method. It would be interesting
to consider the following questions further: (i) Whether can
the proposed control method be modified to achieve global
asymptotic tracking? (ii) If the coefficients of P(s) and Z(s)
are unknown, how to achieve adaptive control based on the
proposed control method?

APPENDIX

Proof of Lemma 1: First, we show that if y(t) can be
measured exactly, i.e., q(y(t),�(t))�(t) = y(t), the feedback
control law (7) ensures that the tracking error ε(t) converges
to zero exponentially as t goes to infinity. Operating both sides
of (3) on y(t), we have

C(s)Qm(s)P(s)[y](t) + D(s)Z(s)[y](t) = A∗(s)[y](t). (24)

Notice that the classical PPC law (7) can be written as

C(s)Qm(s)[u](t) = D(s)
[
y∗ − y

]
(t), (25)

which implies that

D(s)[y](t) = D(s)[y∗](t) − C(s)Qm(s)[u](t). (26)

Substituting (26) into (24), and noticing that P(s)[y](t) =
Z(s)[u](t), we have A∗(s)[y](t) = Z(s)D(s)[y∗](t). By the
boundedness of y∗(t) and the stability of A∗(s), we conclude
y(t) is bounded. Then operating both sides of (3) on u(t),
we have C(s)Qm(s)P(s)[u](t) + D(s)Z(s)[u](t) = A∗(s)[u](t).
Substituting (25) into (24), and noticing that P(s)[y](t) =
Z(s)[u](t), we have A∗(s)[u](t) = P(s)D(s)[y∗](t). Hence,
u(t) is bounded. Last, operating both sides of (3) on y∗(t),
we have D(s)Z(s)[y∗](t) = A∗(s)[y∗](t), which shows that
A∗(s)[y − y∗](t) = 0. By the stability of A∗(s), we know that
the tracking error y(t) − y∗(t) converges to zero exponentially
as t goes to infinity.

As for the quantized version, the quantized-output feedback
PPC law structure (7) can be written as

u(t) = (�c(s) − C(s)Qm(s))
1

�c(s)
[u](t)

+ D(s)

�c(s)

[
y∗ − y

]
(t) + D(s)

�c(s)
[eq(y,�)](t),

Ignoring the exponentially decaying term associated
with the system initial conditions, it is equivalent to
C(s)Qm(s)[u](t) − D(s)[y∗ − y](t) = D(s)[eq(y,�)](t).
Multiply both sides of this equation by Z(s), we
have Z(s)C(s)Qm(s)[u](t) − Z(s)D(s)[y∗ − y](t) =
Z(s)D(s)[eq(y,�)](t). With Qm(s)[y∗](t) = 0 and
P(s)[y](t) = Z(s)[u](t), we add to both sides of this
equation by C(s)P(s)Qm(s)[y∗](t), and hence, we can obtain
A∗(s)[e](t) = Z(s)D(s)[eq(y,�)](t). Since A∗(s) is stable,
there exists some exponentially decaying ε(t) such that (8)
holds.

Proof of Lemma 3: First, we know that

|Y(t)| =
∣∣∣∣H(s)(s + σ)

1

s + σ
[U](t)

∣∣∣∣
≤ 1

s + σ
(|H(s)(s + σ)[U]|)(t)
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= exp(−σ t)
∫ t

0
|exp(στ)(H(s)(s + σ))[U](τ )|dτ. (27)

Let h(t) denote the inverse Laplace transform of H(s)(s + σ).
Since

L(exp(σ t)h(t)) =
∫ ∞

0
exp(σ t)h(t) exp(−st)dt

=
∫ ∞

0
h(t) exp((σ − s)t)dt = H(s − σ)s,

that is, L−1(H(s − σ)s) = exp(σ t)h(t), then we have

(H(s − σ)s)[(exp(σ t)U(t)
]

=
∫ t

0
L−1(H(s − σ)s)[ exp(στ)U(τ )]dτ

= exp(σ t)(H(s)(s + σ))[U](t). (28)

Then, |Y(t)| ≤ exp(−σ t)
∫ t

0 |H(s − σ)s[ exp(στ)U(τ )]|dτ.

By Lemma 2, it can be directly obtained that |Y(t)| ≤
‖hσ (t)‖1

∫ t
0 exp(−σ(t − τ))U(τ )dτ.

Proof of Theorem 1: For t1, we know that when t0 < t < t1,
the control is u(t) = 0. Since �(t) = c1 exp(λ(t − t0)) and
λ > max{β, 0}, �(t) increases faster than |y(t)|. Then there
exists a time instant t1 such that |y(t)| ≤ (M − 1/2)�(t), for
all t ≥ t1, that is, |q(y(t),�(t))| ≤ M − 1.

For τ0, since α < μ < 0, it follows from the defini-
tion of δ1(t) in (15) that the exponentially decaying signal
|ε(t)| decreases faster than δ1(t). Therefore, there exists a time
interval τ0 such that |ε(t)| ≤ δ1(t), ∀t ≥ t1 + τ0.

Second, we analyze the tracking error. We now claim that
when t > t2 and �(t) = �(t2), the inequality |y(t)| <

�(t2)(M − 1
2 ) holds. If it is not true, according to the continu-

ousness of y(t) and the inequality that |y(t2)| < �(t2)(M − 1
2 ),

there exists t′ > t2 such that |y(t)| ≤ �(t2)(M − 1
2 ),

∀ t2 < t < t′, and |y(t′)| = �(t2)(M− 1
2 ), i.e., eq(y(t),�(t2)) ≤

1
2�(t2), ∀ t2 < t < t′. Then from (14), we obtain∣∣y(t′

)∣∣ ≤ |y∗(t′)| + |y(t′) − y∗(t′)| ≤ ∣∣y∗(t′
)∣∣ + ∣∣ε(t′

)∣∣
+ ‖fm‖1

∫ t′

t2

∣∣eq(y(t),�(t))
∣∣ exp(−σ(t′ + t2 − τ))dτ

≤ ∣∣y∗(t′
)∣∣ + c�(t2)

exp(−σ t2) − exp(σ t′)
σ

+ δ1
(
t′
)

≤ �(t2)

(
c exp(−σ t2)

σ
+

∣∣y∗(t′
)∣∣ + δ1

(
t′
)

�(t2)

)

< �(t2)(M − 1

2
),

which contradicts with |y(t′)| = �(t2)(M − 1
2 ). Therefore, we

know that y(t) will never saturate as long as t ≥ t2 with the
sensitivity �(t2). When t > t2, with the sensitivity �(t2), we
obtain eq(y(t),�(t)) ≤ 1

2�(t2). Then we get∣∣y(t) − y∗(t)
∣∣

≤ 1

2
‖fm‖1�(t2)

exp(−σ t2) − exp(−σ t)

σ
+ δ1(t)

≤ c�(t2)
exp(−σ t2)

σ
+ δ1(t).

Hence, t3 is well defined. When t = t3, we change the control
law with �(t) = γ�(t2). Then we obtain

|y(t)| ≤ γ�(t2)

(
c exp(−σ t2)

γ σ
+ |y∗(t)| + δ1(t)

γ�(t2)

)

≤ �(t3)(M − 1

2
), ∀t ≥ t3.

Thus, q(y(t),�(t)) will not saturate when t ≥ t3 with the
sensitivity �(t3). Therefore, the inequality (21) holds.
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